Identifying the time of polynomial drift in the mean of autocorrelated processes
نویسنده
چکیده
Control charts are used to detect changes in a process. Once a change is detected, knowledge of the change point would simplify the search for and identification of the special cause. Consequently, having an estimate of the process change point following a control chart signal would be useful to process engineers. This paper addresses change point estimation for covariancestationary autocorrelated processes where the mean drifts deterministically with time. For example, the mean of a chemical process might drift linearly over time as a result of a constant pressure leak. The goal of this paper is to derive and evaluate a maximum likelihood estimator (MLE) for the time of polynomial drift in the mean of autocorrelated processes. It is assumed that the behavior in the process mean over time is adequately modeled by the kth-order polynomial trend model. Further, it is assumed that the autocorrelation structure is adequately modeled by the general (stationary and invertible) mixed autoregressive-moving-average model. The estimator is intended to be applied to data obtained following a genuine control chart signal in efforts to help pinpoint the root cause of process change. Application of the estimator is demonstrated using a simulated data set. The performance of the estimator is evaluated through Monte Carlo simulation studies for the k = 1 case and across several processes yielding various levels of positive autocorrelation. Results suggest that the proposed estimator provides process engineers with an accurate and useful estimate for the last sample obtained from the unchanged process.
منابع مشابه
Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملPhase-II Monitoring of AR (1) Autocorrelated Polynomial Profiles
In some statistical process control applications, quality of a process or product can be characterized by a relationship between a response and one or more independent variables, which is typically referred to a profile. In this paper, polynomial profiles are considered to monitor processes in which there is a first order autoregressive relation between the error terms in each profile. A remedi...
متن کاملMonitoring and Change Point Estimation of AR(1) Autocorrelated Polynomial Profiles
In this paper, a remedial measure is first proposed to eliminate the effect of autocorrelation in phase-ІІ monitoring of autocorrelated polynomial profiles, where there is a first order autoregressive (AR(1)) relation between the error terms in each profile. Then, a control chart based on the generalized linear test (GLT) is proposed to monitor the coefficients of polynomial profiles and an R-c...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملStochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients
It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quality and Reliability Eng. Int.
دوره 26 شماره
صفحات -
تاریخ انتشار 2010